Product Description
Factory Wholesale High Quality 7.5kw/11kw/15kw/22kw 8/10/13/16bar Midium Pressure Pm VSD Screw Air Compressor for Industrial Laser Cutting with CE, OEM Provided
Technical Parameters:
| Model | Power (KW) |
V/Hz | pressure (Bar) |
Air flow (m3/min) |
Bsp(inch) | L×W×H(mm) | Kg |
| WZS-10GST | 7.5 | 380/50 | 8.5 | 1.1 | RC3/4 | 1850X800X1800 | 480 |
| 10.5 | 1.0 | ||||||
| 13.5 | 0.8 | ||||||
| 16.5 | 0.4 | ||||||
| WZS-11GS | 11 | 380/50 | 16.5 | 0.84 | RC1 | 1300X860X1030 | 380 |
| WZS-11GST | 11 | 380/50 | 8.5 | 0.7 | RC1 | 1850X800X1800 | 600 |
| 10.5 | 1.4 | ||||||
| 13.5 | 1.2 | ||||||
| 16.5 | 0.84 | ||||||
| WZS-15GS | 15 | 380/50 | 16.5 | 1.4 | RC1 | 1300X860X1030 | 480 |
| WZS-15GST | 15 | 380/50 | 8.5 | 2.4 | RC1 | 1850X800X1850 | 650 |
| 10.5 | 2.1 | ||||||
| 13.5 | 1.8 | ||||||
| 16.5 | 1.4 | ||||||
| WZS-22GS | 22 | 380/50 | 16.5 | 2.2 | RC1 1/4 | 1380X850X1150 | 620 |
| WZS-22GST | 22 | 380/50 | 8.5 | 3.6 | RC1 1/4 | 1850X800X1850 | 680 |
| 10.5 | 3.0 | ||||||
| 13.5 | 2.3 | ||||||
| 16.5 | 2.2 | ||||||
| WZS-30GS | 30 | 380/50 | 16.5 | 2.93 | RC1 1/4 | 1380X850X1150 | 680 |
| WZS-37GS | 37 | 380/50 | 16.5 | 3.63 | RC1 1/2 | 1600X1000X1420 | 850 |
| WZS-45GS | 45 | 380/50 | 16.5 | 4.63 | RC1 1/2 | 1600X1000X1420 | 880 |
| WZS-55GS | 55 | 380/50 | 16.5 | 5.70 | RC2 | 1800X1260X1550 | 1350 |
| WZS-75GS | 75 | 380/50 | 16.5 | 7.81 | RC2 | 2150X1300X1700 | 1650 |
| WZS-90GS | 90 | 380/50 | 16.5 | 9.64 | RC2 | 2150X1300X1700 | 1950 |
| WZS-110GS | 110 | 380/50 | 16.5 | 11.58 | DN65 | 2550X1650X1850 | 2600 |
| WZS-132GS | 132 | 380/50 | 16.5 | 14.62 | DN80 | 2550X1650X1850 | 2880 |
| WZS-160GS | 160 | 380/50 | 16.5 | 17.18 | DN80 | 2950X1800X1850 | 3200 |
COMPANY PROFILE
Wan CHINAMFG Compressor (ZheJiang ) Co.,Ltd located in ZheJiang Xihu (West Lake) Dis. industrial zone, which is a professional manufacturer Factory always
has been committed to the R&D of permanent magnet variable frequency screw air compressors, reached the national standard. Our products in-
clude integrated, split permanent magnet variable frequency screw air compressor series, non-inductive permanent magnet variable-frequency
screw air compressor series, integrated oil motor permanent magnet variable frequency screw air compressor series, low-pressure permanent
magnet variable frequency screw air compressor series, two-stage compression permanent magnet variable frequency screw air compressor
series, refrigerated dryer series, adsorption dryer series, high-efficiency precision filter series , air tank series , etc.
We have more than 1 hundred distributors in China. Products have been exported to Europe, North America, Southeast Asia and the Middle
East for many years, also occupy a large part of the domestic market, and the sales volumn is still growing year by year. For many years, Wan
Beardsley has become a trusted supplier of screw air compressors with rich experience and continuous innovative technology.
WORKSHOP
EXHIBITIONS
PROJECT CASES
100+ DISTRIBUTORS
PACKAGING STYLE
SHIPPING
CERTIFICATES
FAQ
1. OEM/ODM, or customer’ s logo printed is available?
Yes, OEM/ODM, customer’s logo is welcomed.
2. Delivery date?
Usually 5-25 working days after receiving deposit, specific delivery date based on order quantity.
3. What’s your payment terms?
Regularly doing 30% deposit and 70% balance by T/T, Western Union, Paypal, other payment terms also can be discussed based on our cooperation.
4. How to control your quality?
We have professional QC team, control the quality during the mass production and inspect the products before shipping.
5. If we don’ t have shipping forwarder in China , would you do this for us ?
We can offer you best shipping line to ensure you can get the goods timely at best price.
6. I never come to China before , can you be my guide in China ?
Sure , I’m glad to be your guide because our company directly located in ZheJiang , where is the most famous city in China, if you want to come China then we are happy to provide you one-stop service, such as booking ticket, picking up at the airport, booking hotel, accompany visiting factory. It gonna make you an unforgettable memory.
MARKETING NETWORK
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Video Technical Support |
|---|---|
| Warranty: | Unit 1 Year, Air End 2 Years |
| Lubrication Style: | Oil-less |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Structure Type: | Closed Type |
| Customization: |
Available
|
|
|---|
.webp)
What are the energy-saving technologies available for air compressors?
There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:
1. Variable Speed Drive (VSD) Compressors:
VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.
2. Energy-Efficient Motors:
The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.
3. Heat Recovery Systems:
Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.
4. Air Receiver Tanks:
Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.
5. System Control and Automation:
Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.
6. Leak Detection and Repair:
Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.
7. System Optimization and Maintenance:
Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.
By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.
.webp)
How are air compressors used in refrigeration and HVAC systems?
Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:
1. Refrigerant Compression:
In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.
2. Refrigeration Cycle:
The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.
3. HVAC Cooling and Heating:
In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.
4. Air Conditioning:
Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.
5. Compressor Types:
Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.
6. Energy Efficiency:
Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.
By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.
.webp)
How does an air compressor work?
An air compressor works by using mechanical energy to compress and pressurize air, which is then stored and used for various applications. Here’s a detailed explanation of how an air compressor operates:
1. Air Intake: The air compressor draws in ambient air through an intake valve or filter. The air may pass through a series of filters to remove contaminants such as dust, dirt, and moisture, ensuring the compressed air is clean and suitable for its intended use.
2. Compression: The intake air enters a compression chamber, typically consisting of one or more pistons or a rotating screw mechanism. As the piston moves or the screw rotates, the volume of the compression chamber decreases, causing the air to be compressed. This compression process increases the pressure and reduces the volume of the air.
3. Pressure Build-Up: The compressed air is discharged into a storage tank or receiver where it is held at a high pressure. The tank allows the compressed air to be stored for later use and helps to maintain a consistent supply of compressed air, even during periods of high demand.
4. Pressure Regulation: Air compressors often have a pressure regulator that controls the output pressure of the compressed air. This allows the user to adjust the pressure according to the requirements of the specific application. The pressure regulator ensures that the compressed air is delivered at the desired pressure level.
5. Release and Use: When compressed air is needed, it is released from the storage tank or receiver through an outlet valve or connection. The compressed air can then be directed to the desired application, such as pneumatic tools, air-operated machinery, or other pneumatic systems.
6. Continued Operation: The air compressor continues to operate as long as there is a demand for compressed air. When the pressure in the storage tank drops below a certain level, the compressor automatically starts again to replenish the compressed air supply.
Additionally, air compressors may include various components such as pressure gauges, safety valves, lubrication systems, and cooling mechanisms to ensure efficient and reliable operation.
In summary, an air compressor works by drawing in air, compressing it to increase its pressure, storing the compressed air, regulating the output pressure, and releasing it for use in various applications. This process allows for the generation of a continuous supply of compressed air for a wide range of industrial, commercial, and personal uses.


editor by CX 2024-03-26
China OEM Factory Price CHINAMFG Ailida CHINAMFG 1.2/30bar High Pressure Air Compressor with Tank small air compressor
Product Description
Customize 09WM/CWM High Pressure 30bar Shangair Piston Air Compressor
| Model | Air discharge (Nm3/min) | Discharge pressure | Motor power | Running speed | Weight(kg) | Size(mm)L*W*H |
| 09WM-1130 | 1.0 | 30 bar | 11 | 600 | 420 | 1360*796*870 |
| 2-09WM-1130 | 2.0 | 11×2 | 1050 | 1430*1690*1015 | ||
| 09WM-1130H | 1.2 | 11 | 630 | 420 | 1360*796*870 | |
| 2-09WM-1130H | 2.4 | 11×2 | 1090 | 1430*1690*1015 | ||
| 09WM-1530 | 1.2 | 15 | 670 | 430 | 1360*796*870 | |
| 2-09WM-1530 | 2.4 | 15×2 | 1150 | 1430*1690*1015 |
Main features of 09WM series Industrial Oil Free Air Compressor Low Pressure Piston Driven Air Compressor:
-Shangair patent cylindrical direct-flow valve is used by our compressors. The valve is made from the stainless steel belt imported from Sweden and it is free from fracture during the working life.
-The piston of our air compressor applies the integral cast chromium plating ring, the working life is extended by 3 to 4 times.
-Shangair’s unique compressor dynamic balancing technology. The vibration is only as a quarter of the world standard.
-The whole air compressor adopts rolling bearing without bearing shell
-To ensure safety and reliability of air compressor, redundancy design principle is adopted and multiple protection measures are taken: such as overload protection; overheat protection; phase-failure protection; low-voltage protection; drainage while stop running; startup under the condition pressure is zero.
-High reliability, long maintenance cycle, very low oil consumption (oil-saving), low energy (power saving), these dramatically reduce the general operating cost of our air compressors.
Detailed Images:
Our Services:
Pre-Sales Service After-Sales Service
Inquiry and consulting support. Training how to instal and use the machine.
Sample testing support. Online technical support.
Our Certificates:
Our Factory:
HangZhou CHINAMFG Mechatronics Technology Co., Ltd. is a professional trading company integrating R&D, manufacturing and sales. We are mainly engaged in compressor supply and technical service upgrade, compressor accessories supply as well as a variety of automotive electronics and lighting products. Professional service and high quality products have won high recognition of customers.
FAQ:1. who are we?
We are based in ZheJiang , China, start from 2014,sell to Africa(20.00%),Southeast Asia(20.00%),South America(20.00%),Mid East(20.00%),Eastern Asia(10.00%),North America(10.00%). There are total about 11-50 people in our office.
2. how can we guarantee quality?
Always a pre-production sample before mass production;
Always final Inspection before shipment;
3.what can you buy from us?
PET Blowing Machine,Filling Machine,Water Purification Equipment,Air Compressor and Air Purification Euipment,Chiller
4. why should you buy from us not from other suppliers?
HangZhou CHINAMFG Mechatronics CO., LTD is an enterprise which is focus on plastic packing and relating products.The main products include: filling machine ,bottle blowing machine, air compressor, chiller, water purification euipment and relating machines.
5. what services can we provide?
Accepted Delivery Terms: FOB,CIF,EXW,FCA,DDP,Express Delivery;
Accepted Payment Currency:USD,EUR,CNY;
Accepted Payment Type: T/T,L/C,D/P D/A,PayPal,Western Union,Cash;
Language Spoken:English,Chinese,Spanish
| After-sales Service: | Online Support |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Cylinder Arrangement: | Parallel Arrangement |
| Cylinder Position: | Angular |
| Customization: |
Available
|
|
|---|
.webp)
Can air compressors be used for cleaning and blowing dust?
Yes, air compressors can be effectively used for cleaning and blowing dust in various applications. Here’s how air compressors are utilized for these purposes:
1. Cleaning Machinery and Equipment:
Air compressors are commonly used for cleaning machinery and equipment in industries such as manufacturing, automotive, and construction. Compressed air is directed through a nozzle or blowgun attachment to blow away dust, debris, and other contaminants from surfaces, crevices, and hard-to-reach areas. The high-pressure air effectively dislodges and removes accumulated dust, helping to maintain equipment performance and cleanliness.
2. Dusting Surfaces:
Air compressors are also employed for dusting surfaces in various settings, including homes, offices, and workshops. The compressed air can be used to blow dust off furniture, shelves, electronic equipment, and other objects. It provides a quick and efficient method of dusting, especially for intricate or delicate items where traditional dusting methods may be challenging.
3. Cleaning HVAC Systems:
Air compressors are utilized for cleaning HVAC (Heating, Ventilation, and Air Conditioning) systems. The compressed air can be used to blow dust, dirt, and debris from air ducts, vents, and cooling coils. This helps improve the efficiency and air quality of HVAC systems, preventing the buildup of contaminants that can affect indoor air quality.
4. Blowing Dust in Workshops:
In workshops and garages, air compressors are often used to blow dust and debris from workbenches, power tools, and work areas. Compressed air is directed to blow away loose particles and maintain a clean and safe work environment. This is particularly useful in woodworking, metalworking, and other trades where dust and debris can accumulate during the manufacturing or fabrication processes.
5. Cleaning Electronics and Computer Equipment:
Air compressors are employed for cleaning electronics and computer equipment. The compressed air is used to blow dust and debris from keyboards, computer cases, circuit boards, and other electronic components. It helps in preventing overheating and maintaining the proper functioning of sensitive electronic devices.
6. Industrial Cleaning Applications:
Air compressors find extensive use in industrial cleaning applications. They are employed in industrial settings, such as factories and warehouses, for cleaning large surfaces, production lines, and equipment. Compressed air is directed through specialized cleaning attachments or air-operated cleaning systems to remove dust, dirt, and contaminants efficiently.
When using air compressors for cleaning and blowing dust, it is important to follow safety precautions and guidelines. The high-pressure air can cause injury if directed towards the body or sensitive equipment. It is advisable to wear appropriate personal protective equipment, such as safety glasses and gloves, and ensure that the air pressure is regulated to prevent excessive force.
Overall, air compressors provide a versatile and effective solution for cleaning and blowing dust in various applications, offering a convenient alternative to traditional cleaning methods.
.webp)
What is the role of air compressors in manufacturing and industrial processes?
Air compressors play a crucial role in various manufacturing and industrial processes, providing a reliable source of compressed air that powers a wide range of equipment and tools. Here are some key roles of air compressors in manufacturing and industrial settings:
1. Pneumatic Tools and Equipment:
Air compressors power a wide range of pneumatic tools and equipment used in manufacturing processes. These tools include impact wrenches, air drills, sanders, grinders, nail guns, and spray guns. Compressed air provides the necessary force and energy for these tools, enabling efficient and precise operations.
2. Automation and Control Systems:
Compressed air is used in automation and control systems within manufacturing facilities. Pneumatic actuators and valves use compressed air to control the movement of machinery and components. These systems are widely used in assembly lines, packaging operations, and material handling processes.
3. Air Blowing and Cleaning:
Compressed air is employed for blowing and cleaning applications in manufacturing and industrial processes. Air blowguns and air nozzles are used to remove debris, dust, and contaminants from surfaces, machinery, and products. Compressed air is also used for drying, cooling, and purging operations.
4. Air Separation and Gas Generation:
Air compressors are used in air separation plants to generate industrial gases such as nitrogen, oxygen, and argon. These gases are essential for various industrial processes, including metal fabrication, chemical production, and food packaging.
5. HVAC Systems:
Compressed air is utilized in heating, ventilation, and air conditioning (HVAC) systems. It powers pneumatic actuators for damper control, pneumatic controls for pressure regulation, and pneumatic valves for flow control in HVAC applications.
6. Air Compression for Storage and Transport:
Compressed air is used for storage and transport purposes in manufacturing and industrial settings. It is often used to pressurize storage tanks or containers that hold gases or liquids. Compressed air also facilitates the transfer of materials through pipelines and pneumatic conveying systems.
7. Process Instrumentation:
Compressed air is utilized in process instrumentation and control systems. It powers pneumatic instruments such as pressure gauges, flow meters, and control valves. These instruments play a critical role in monitoring and regulating various parameters in industrial processes.
8. Material Handling and Pneumatic Conveying:
In manufacturing and industrial facilities, compressed air is used for material handling and pneumatic conveying systems. It enables the movement of bulk materials such as powders, granules, and pellets through pipelines, facilitating efficient and controlled material transfer.
Overall, air compressors are vital components in manufacturing and industrial processes, providing a versatile and efficient source of power for a wide range of applications. The specific role of air compressors may vary depending on the industry, process requirements, and operational needs.
.webp)
How do you choose the right size of air compressor for your needs?
Choosing the right size of air compressor is essential to ensure optimal performance and efficiency for your specific needs. Here are some factors to consider when selecting the appropriate size:
1. Air Demand: Determine the air demand requirements of your applications. Calculate the total CFM (Cubic Feet per Minute) needed by considering the air consumption of all the pneumatic tools and equipment that will be operated simultaneously. Choose an air compressor with a CFM rating that meets or exceeds this total demand.
2. Pressure Requirements: Consider the required operating pressure for your applications. Check the PSI (Pounds per Square Inch) rating of the tools and equipment you will be using. Ensure that the air compressor you choose can deliver the necessary pressure consistently.
3. Duty Cycle: Evaluate the duty cycle of the air compressor. The duty cycle represents the percentage of time the compressor can operate within a given time period without overheating or experiencing performance issues. If you require continuous or heavy-duty operation, choose a compressor with a higher duty cycle.
4. Power Source: Determine the available power source at your location. Air compressors can be powered by electricity or gasoline engines. Ensure that the chosen compressor matches the available power supply and consider factors such as voltage, phase, and fuel requirements.
5. Portability: Assess the portability requirements of your applications. If you need to move the air compressor frequently or use it in different locations, consider a portable or wheeled compressor that is easy to transport.
6. Space and Noise Constraints: Consider the available space for installation and the noise restrictions in your working environment. Choose an air compressor that fits within the allocated space and meets any noise regulations or requirements.
7. Future Expansion: Anticipate any potential future expansions or increases in air demand. If you expect your air demand to grow over time, it may be wise to choose a slightly larger compressor to accommodate future needs and avoid the need for premature replacement.
8. Budget: Consider your budgetary constraints. Compare the prices of different air compressor models while ensuring that the chosen compressor meets your specific requirements. Keep in mind that investing in a higher-quality compressor may result in better performance, durability, and long-term cost savings.
By considering these factors and evaluating your specific needs, you can choose the right size of air compressor that will meet your air demand, pressure requirements, and operational preferences, ultimately ensuring efficient and reliable performance.


editor by CX 2023-12-09