Tag Archives: compressor arb

China supplier 132kw 180HP Pm Motor Energy Saving Two Stage VSD Inverter Screw Type Rotary Industrial Air Compressor arb air compressor

Product Description

Product Description

Product Parameters

Model Motor Power Maximum Working Pressure Free Air Delivery Air Outlet Pipe Diameter Weight Dimensions(L*W*H)
kW hp bar(g) psig m³/min cfm kg mm
BG30APMII 22 30 7 102 4.3 152 G1-1/2″ 650 1500*1000*1350
8 116 4.1  145
10 145 3.5  124
13 189 2.7  95
BG40APMII 30 40 7 102 6.0  212 G1-1/2″ 700 1500*1000*1350
8 116 5.9  208
10 145 4.7  166
13 189 3.9  138
BG50APMII 37 50 7 102 7.1  251 G1-1/2″ 750 1500*1000*1350
8 116 6.9  244
10 145 5.8  205
13 189 5.4  191
BG60APMII 45 60 7 102 10.0  353 G2″ 1250 2100*1300*1650
8 116 9.5  335
10 145 7.8  275
13 189 6.8  240
BG75APMII 55 75 7 102 13.0  459 G2″ 1300 2100*1300*1650
8 116 12.5  441
10 145 9.2  325
13 189 7.5  265
BG100APMII 75 100 7 102 15.5  547 G2″ 1350 2100*1300*1650
8 116 15.2  537
10 145 12.0  424
13 189 10.2  360
BG125APMII 90 125 7 102 19.8  699 DN80 2700 2500*1650*1900
8 116 19.5  689
10 145 15.0  530
13 189 14.0  494
BG150APMII 110 150 7 102 24.0  848 DN80 2800 2500*1650*1900
8 116 23.0  812
10 145 19.2  678
13 189 16.0  565
BG180APMII 132 180 7 102 27.5  971 DN80 3000 2500*1650*1900
8 116 27.0  954
10 145 23.7  837
13 189 19.0  671
BG220APMII 160 220 7 102 33.0  1165 DN80 4300 3000*1900*1950
8 116 32.5  1148
10 145 27.5  971
13 189 22.5  795
BG250APMII 185 250 7 102 39.0  1377 DN80 4400 3000*1900*1950
8 116 36.0  1271
10 145 32.0  1130
13 189 27.5  971
BG270APMII 200 270 7 102 43.5  1536 DN80 5000 3600*2200*2200
8 116 41.0  1448
10 145 35.5  1254
13 189 31.5  1112
BG300APMII 220 300 7 102 51.5  1819 DN100 5500 3600*2200*2200
8 116 46.0  1624
10 145 38.5  1360
13 189 35.5  1254
BG340APMII 250 340 7 102 54.0  1907 DN100 6000 3600*2200*2200
8 116 51.0  1801
10 145 45.0  1589
13 189 38.0  1342
BG380APMII 280 380 7 102 60.0  2119 DN125 6800 4000*2300*2300
8 116 57.0  2013
10 145 50.0  1766
13 189 43.0  1519
BG420APMII 315 420 7 102 65.0  2295 DN125 7000 4000*2300*2300
8 116 62.0  2190
10 145 56.0  1978
13 189 50.5  1783
BG480APMII 355 480 7 102 75.0  2649 DN150 8500 4200*2200*2350
8 116 73.0  2578
10 145 64.0  2260
13 189 55.0  1942
BG540APMII 400 540 7 102 84.0  2966 DN150 9000 4200*2200*2350
8 116 82.0  2896
10 145 72.0  2543
13 189 61.0  2154

Company Profile

Wallboge is a high-tech enterprise and is considered 1 of the leading manufacturers of air compressor products in China. Our goal is to provide exceptional customer service coupled with quality products and energy saving solutions.

Wallboge’ s primary businesses focus in following key areas:

Integrated screw air compressor for laser cutting
Permanent magnet variable frequency screw air compressor
Two-stage compression permanent magnet variable frequency screw air compressor
Low pressure two-stage compression permanent magnet variable frequency screw air compressor
Low pressure permanent magnet variable frequency screw air compressor
Water-lubricated oil-free screw air compressor
Fixed speed screw air compressor
Oil-free screw blower
Screw vacuum pump

At Wallboge, we earn our customers’ trust and satisfaction by manufacturing the superior quality compressed air products for all industries. All of our products are designed for reliable performance, easy maintenance, and maximum energy efficiency. CHINAMFG has been exporting to more than 150 countries across the globe. 

CHINAMFG continuously innovates product development and management to meet customers’ demand. The powerful enterprise culture and continuous innovation make CHINAMFG improved rapidly. Wallboge’ s vision is to be a world-renowned high-end energy-saving machinery brand, with sustainable development, constantly improving its own value and sharing it with our customers and staff, committed to continuously satisfying the needs of global companies by providing a full range of industrial air compression solutions.

Certifications

Exhibitions

 

After Sales Service

1. 24/7 after sales service in different languages.
2. Online instruction for installation and commissioning.
3. On-site instruction for installation and commissioning provided by well-trained engineers or local authorized service center.
4. CHINAMFG agents and after sales service available.
 

Our Advantages

1. Proven product quality.
2. Factory direct prices.
3. On-time delivery.
4. Prompt technical support in different languages before sales, in sales and after sales.
5. Small orders accepted to check quality first.
6. OEM & ODM service available.

 

FAQ

Q1: Are you a factory or a trading company? 
A1: We are a factory. Please check our Company Profile.

Q2: What is the exact address of your factory? 
A2: No. 588, East Tonggang Road, Shaxi Town, HangZhou City, ZheJiang Province, China

Q3: What is your delivery time?
A3: For standard voltage, the delivery time is 15 working days after you confirm the order. For non-standard voltage, please contact our sales to confirm the delivery time.

Q4: What kind of payment terms do you accept?
A4: We accept T/T, L/C at sight.

Q5: How long is the warranty of your air compressor?
A5: 2 years for the whole air compressor except consumable spare parts.

Q6: How long could your air compressor be used?
A6: Generally, more than 10 years.

Q7: What is your MOQ requirement?
A7: 1 unit.

Q8: Can you offer OEM & ODM service?
A8: Yes, with a professional design team, we can offer OEM & ODM service.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Engineers Available to Overseas Service.
Warranty: 2 Years
Lubrication Style: Lubricated
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

What are the advantages of using rotary vane compressors?

Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:

1. Compact and Lightweight:

Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.

2. High Efficiency:

Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.

3. Quiet Operation:

Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.

4. Oil Lubrication:

Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.

5. Versatile Applications:

Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.

6. Easy Maintenance:

Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.

These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.

air compressor

What safety precautions should be taken when working with compressed air?

Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:

1. Personal Protective Equipment (PPE):

Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.

2. Compressed Air Storage:

Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.

3. Pressure Regulation:

Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.

4. Air Hose Inspection:

Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.

5. Air Blowguns:

Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.

6. Air Tool Safety:

Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.

7. Air Compressor Maintenance:

Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.

8. Training and Education:

Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.

9. Lockout/Tagout:

When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.

10. Proper Ventilation:

Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.

By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.

air compressor

What are the key components of an air compressor system?

An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:

1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.

2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.

3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.

4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.

5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.

6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.

7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.

8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.

9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.

10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.

These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.

China supplier 132kw 180HP Pm Motor Energy Saving Two Stage VSD Inverter Screw Type Rotary Industrial Air Compressor   arb air compressorChina supplier 132kw 180HP Pm Motor Energy Saving Two Stage VSD Inverter Screw Type Rotary Industrial Air Compressor   arb air compressor
editor by CX 2024-05-15

China OEM 37kw Screw Air Compressor Rotorcomp Rotary Screw Air Compressor arb air compressor

Product Description

 

37KW Screw air compressor rotorcomp rotary screw air compressor 

Products Description

Type: Oil Injected Permanent Magnetic Screw Compressor
Voltage: 380V/50HZ/3P, 220V/60HZ/3P, 400V/50HZ/3P, 415V/50HZ/3P or Customer′s Requirements
Working Pressure: 7bar/8bar/10bar
Installed Motor Power: 18.5~110 Kw
Color: Blue
Driven Method: Taper Connection Direct Driven
Air End: High Efficiency Airend
Trademark: SCR
Transport Package: Standard Wooden Packing
Available Certificate: CE, ISO, UL, ASME, GHOST
Origin: ZheJiang , China
application: Packing,Painting,Precision Electroplating,Peparing

 

 

Advantages:
1. China-Japan latest technology cooperation, high reliability.
2. Oil Cooling Permanent Magnetic Motor.
3. IP65 protection grade & heavy duty air filter, suitable for high dusty environment.
4. IE4 Efficiency motor efficiency.
5. Most energy saving mode, Only work at loading.
6. Wide frequency range 25%-100%.
7. Premium Magnetic material resist more than 180ºC temp.
8. Reliable PM motor supplier from Italy.
9. Direct Taper connection, no transmission power loss, easy maintenance.
10.Touch Screen PLC with preset running schedule, more intelligent control.
11. Both main motor and fan motor are inverter control, more accurate control.
12. Easy for installation and service.
13. Fantastic Energy Saving, save up to more than 30-40%.

Details image 

HIGH QUALITY PM MOTOR

The motor winding take use of new technology vacuum expoxy potting process, it increase the thermal conducivity and motor insulation protection
Automatic vacuum expoxy processing enhance the motor quality
The new seal technology of winding, it is sealed with expoxy, better protection for winding.
F grade insulation grade, resist up to 180degree, integrated PTC protection.
 

        PM MOTOR COOLING                                                                     SCR heavy duty air filter

        Liquid Cooling, IP65 PM Motor. 
        Indepent cooling system.

HIGH EFFICIENCY SEPARATION SYSTEM
Cyclone oil tank design encsure the high separation efficiency.
First stage mechanical centrifugal separation.
Second stage is high efficiency oil separator.
4000hours life-span of oil separator.
The oil content is lower than 3PPM.

LATEST V/F Inverter
* Latest V/F technology Inverter.
* CE/UL Certificed Inverter.
* Both Motor are inverter control.
* High reliable inverter brand proofed in the market.
* Professional service support.
* Automatic airend speed adjust to match your air demand, help good energy saving

How to choose ?

Model No. Working pressure
bar
Capacity(FAD)
m3/min
Power
kw
Driving model
Cooling method 
Noise level
dB
Outlet diameter Weight
kg
Dimension 
mm
YCR7.5 7 1.2 7.5 Direct
Air cooling(Standard)
63 G3/4″ 400 890*560*840
8 1.1
10 1.0
12 0.8
YCR11 7 1.8 11 Direct
Air cooling(Standard)
64 G3/4″ 460 1050*690*1080
8 1.6
10 1.5
12 1.3
YCR15 7 2.6 15 Direct
Air cooling(Standard
65 G3/4″ 500 1050*690*1080
8 2.4
10 2.1
12 1.8
YCR22 7  3.7 22 Direct driven 
Air cooling
65 G1″  550 1350*780*1250
8  3.5
10  3.1
12  2.7
YCR30     7 5.3 30 Direct driven 
Air cooling
67    G1-1/2″    940    1420*900*1425
 8 5.1
10 4.6
12 3.9
YCR37 7 6.5 37 Direct driven
Air cooling
67 G1-1/2″ 1000 1420*900*1425
8 6.2
10 5.6
12 4.9
YCR45 7 8.1 45 Direct driven
Air cooling
 70 G1-1/2″  1050  1750*1100*1700
8 7.5
10 7.0
12 6.0
YCR55 7 10.5 55 Direct driven
Air cooling
73 G2″ 1500 1750*1100*1700
8 10
9 9.0
12 8.0
YCR75 7 14.3 75 Direct driven 
Air cooling
75 G2″ 1700 1750*1100*1700
8 13.0
10 11.8
12 10.5

 

 

 

 

 

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Angular
Structure Type: Closed Type
Installation Type: Stationary Type
Customization:
Available

|

air compressor

What is the impact of humidity on compressed air quality?

Humidity can have a significant impact on the quality of compressed air. Compressed air systems often draw in ambient air, which contains moisture in the form of water vapor. When this air is compressed, the moisture becomes concentrated, leading to potential issues in the compressed air. Here’s an overview of the impact of humidity on compressed air quality:

1. Corrosion:

High humidity in compressed air can contribute to corrosion within the compressed air system. The moisture in the air can react with metal surfaces, leading to rust and corrosion in pipes, tanks, valves, and other components. Corrosion not only weakens the structural integrity of the system but also introduces contaminants into the compressed air, compromising its quality and potentially damaging downstream equipment.

2. Contaminant Carryover:

Humidity in compressed air can cause carryover of contaminants. Water droplets formed due to condensation can carry particulates, oil, and other impurities present in the air. These contaminants can then be transported along with the compressed air, leading to fouling of filters, clogging of pipelines, and potential damage to pneumatic tools, machinery, and processes.

3. Decreased Efficiency of Pneumatic Systems:

Excessive moisture in compressed air can reduce the efficiency of pneumatic systems. Water droplets can obstruct or block the flow of air, leading to decreased performance of pneumatic tools and equipment. Moisture can also cause problems in control valves, actuators, and other pneumatic devices, affecting their responsiveness and accuracy.

4. Product Contamination:

In industries where compressed air comes into direct contact with products or processes, high humidity can result in product contamination. Moisture in compressed air can mix with sensitive products, leading to quality issues, spoilage, or even health hazards in industries such as food and beverage, pharmaceuticals, and electronics manufacturing.

5. Increased Maintenance Requirements:

Humidity in compressed air can increase the maintenance requirements of a compressed air system. Moisture can accumulate in filters, separators, and other air treatment components, necessitating frequent replacement or cleaning. Excessive moisture can also lead to the growth of bacteria, fungus, and mold within the system, requiring additional cleaning and maintenance efforts.

6. Adverse Effects on Instrumentation:

Humidity can adversely affect instrumentation and control systems that rely on compressed air. Moisture can disrupt the accuracy and reliability of pressure sensors, flow meters, and other pneumatic instruments, leading to incorrect measurements and control signals.

To mitigate the impact of humidity on compressed air quality, various air treatment equipment is employed, including air dryers, moisture separators, and filters. These devices help remove moisture from the compressed air, ensuring that the air supplied is dry and of high quality for the intended applications.

air compressor

What are the environmental considerations when using air compressors?

When using air compressors, there are several environmental considerations to keep in mind. Here’s an in-depth look at some of the key factors:

Energy Efficiency:

Energy efficiency is a crucial environmental consideration when using air compressors. Compressing air requires a significant amount of energy, and inefficient compressors can consume excessive power, leading to higher energy consumption and increased greenhouse gas emissions. It is important to choose energy-efficient air compressors that incorporate features such as Variable Speed Drive (VSD) technology and efficient motor design, as they can help minimize energy waste and reduce the carbon footprint.

Air Leakage:

Air leakage is a common issue in compressed air systems and can contribute to energy waste and environmental impact. Leaks in the system result in the continuous release of compressed air, requiring the compressor to work harder and consume more energy to maintain the desired pressure. Regular inspection and maintenance of the compressed air system to detect and repair leaks can help reduce air loss and improve overall energy efficiency.

Noise Pollution:

Air compressors can generate significant noise levels during operation, which can contribute to noise pollution. Prolonged exposure to high noise levels can have detrimental effects on human health and well-being and can also impact the surrounding environment and wildlife. It is important to consider noise reduction measures such as sound insulation, proper equipment placement, and using quieter compressor models to mitigate the impact of noise pollution.

Emissions:

While air compressors do not directly emit pollutants, the electricity or fuel used to power them can have an environmental impact. If the electricity is generated from fossil fuels, the associated emissions from power plants contribute to air pollution and greenhouse gas emissions. Choosing energy sources with lower emissions, such as renewable energy, can help reduce the environmental impact of operating air compressors.

Proper Waste Management:

Proper waste management is essential when using air compressors. This includes the appropriate disposal of compressor lubricants, filters, and other maintenance-related materials. It is important to follow local regulations and guidelines for waste disposal to prevent contamination of soil, water, or air and minimize the environmental impact.

Sustainable Practices:

Adopting sustainable practices can further reduce the environmental impact of using air compressors. This can include implementing preventive maintenance programs to optimize performance, reducing idle time, and promoting responsible use of compressed air by avoiding overpressurization and optimizing system design.

By considering these environmental factors and taking appropriate measures, it is possible to minimize the environmental impact associated with the use of air compressors. Choosing energy-efficient models, addressing air leaks, managing waste properly, and adopting sustainable practices can contribute to a more environmentally friendly operation.

air compressor

What is the purpose of an air compressor?

An air compressor serves the purpose of converting power, typically from an electric motor or an engine, into potential energy stored in compressed air. It achieves this by compressing and pressurizing air, which can then be used for various applications. Here’s a detailed explanation of the purpose of an air compressor:

1. Powering Pneumatic Tools: One of the primary uses of an air compressor is to power pneumatic tools. Compressed air can be used to operate a wide range of tools, such as impact wrenches, nail guns, paint sprayers, sanders, and drills. The compressed air provides the necessary force and energy to drive these tools, making them efficient and versatile.

2. Supplying Clean and Dry Air: Air compressors are often used to supply clean and dry compressed air for various industrial processes. Many manufacturing and production operations require a reliable source of compressed air that is free from moisture, oil, and other contaminants. Air compressors equipped with appropriate filters and dryers can deliver high-quality compressed air for applications such as instrumentation, control systems, and pneumatic machinery.

3. Inflating Tires and Sports Equipment: Air compressors are commonly used for inflating tires, whether it’s for vehicles, bicycles, or sports equipment. They provide a convenient and efficient method for quickly filling tires with the required pressure. Air compressors are also used for inflating sports balls, inflatable toys, and other similar items.

4. Operating HVAC Systems: Air compressors play a crucial role in the operation of heating, ventilation, and air conditioning (HVAC) systems. They provide compressed air for controlling and actuating dampers, valves, and actuators in HVAC systems, enabling precise regulation of air flow and temperature.

5. Assisting in Industrial Processes: Compressed air is utilized in various industrial processes. It can be used for air blow-off applications, cleaning and drying parts, powering air-operated machinery, and controlling pneumatic systems. Air compressors provide a reliable and efficient source of compressed air that can be tailored to meet the specific requirements of different industrial applications.

6. Supporting Scuba Diving and Breathing Systems: In scuba diving and other breathing systems, air compressors are responsible for filling diving tanks and supplying breathable air to divers. These compressors are designed to meet strict safety standards and deliver compressed air that is free from contaminants.

Overall, the purpose of an air compressor is to provide a versatile source of compressed air for powering tools, supplying clean air for various applications, inflating tires and sports equipment, supporting industrial processes, and facilitating breathing systems in specific contexts.

China OEM 37kw Screw Air Compressor Rotorcomp Rotary Screw Air Compressor   arb air compressorChina OEM 37kw Screw Air Compressor Rotorcomp Rotary Screw Air Compressor   arb air compressor
editor by CX 2024-04-22

China Custom Vg1560130080 Double Cylinder Water Cooled Air Compressor Repair Kit for CHINAMFG CHINAMFG Steyr Sitrak Truck Spare Parts arb air compressor

Product Description

Product Description

AIR COMPRESSOR REPAIR KIT FOR CHINAMFG ENGINE WD615 WD618 WP10 WP12 WP4 WP6

PART NUMBER:

VG156013 6126 6126 0571 6126 6126 
6126 6126 6156 6126 6126571 13026014 VG156013-81DM  A/6108 912/913 X6130 12159770 12273212 2W8002 

Detailed Photos

 

WE CAN SUPPLY ALL KINDS OF ENGINE PARTS:
CONNECTING ROD,PISTON,PISTON RING,LINER,PISTON PIN,CRANKSHAFT,FLYWHEEL,FILTERS,ENGINE ASSY,CYLINDER BLOCK,STARTER,ALTERNATOR AND SO ON.

ONCE YOU SUPPLY THE ENGINE STEEL PLATE,WE CAN CHECK ALL HTE PARTS USED IN THE ENGINE.
PLEASE DO NOT HESISTATE TO CONTACT WHEN YOU DEMAND THE RELATED PRODUCTS,WE WILL GIVE BEST SERVICE.WELCOME TO INQUIRY ANYTIME

Packaging & Shipping

1. Packaging details: carton and wooden box packaging,woven bag,brown box, or according to customer requirements.

2. Delivery Period: 7-30 working days after receiving 30% deposit byTT

3. Port: HangZhou Port,China.

4. Transport: By sea, by air,DHL,FEDEX,UPS,TNT,

FAQ

1. Q:About the payment term.
    A: We can accept TT,LC,PAYPAL,WESTERNUION,and so on

2.Q:About the Quality and price
   A: We supply good quality products to all our customers,give the competitive price.

3.Q:About the warranty period
   A:At least half year, some parts are even longer.

4. Q:How to make order ?
    A:Customer can contact us online,or send email with detail inquiry list,then we can
reply soon

5. Q:About the discount
    A:If the quantity large,we will give
resonalbe discount.And for long time cooperation customer,we can give credit
support

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Free Change for Quality Problem
Classification: Non Variable Capacity
Transmission Power: Turbine
Cooling Method: Water-cooled
Application: Weichai Engine, Truck, Trailer
Quality: Good Quality

air compressor

What is the role of air compressors in power generation?

Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:

1. Combustion Air Supply:

Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.

2. Instrumentation and Control:

Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.

3. Cooling and Ventilation:

In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.

4. Cleaning and Maintenance:

Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.

5. Pneumatic Tools and Equipment:

In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.

6. Nitrogen Generation:

Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.

7. Start-up and Emergency Systems:

Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.

Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.

air compressor

How do you choose the right air compressor for woodworking?

Choosing the right air compressor for woodworking is essential to ensure efficient and effective operation of pneumatic tools and equipment. Here are some factors to consider when selecting an air compressor for woodworking:

1. Required Air Volume (CFM):

Determine the required air volume or cubic feet per minute (CFM) for your woodworking tools and equipment. Different tools have varying CFM requirements, so it is crucial to choose an air compressor that can deliver the required CFM to power your tools effectively. Make sure to consider the highest CFM requirement among the tools you’ll be using simultaneously.

2. Tank Size:

Consider the tank size of the air compressor. A larger tank allows for more stored air, which can be beneficial when using tools that require short bursts of high air volume. It helps maintain a consistent air supply and reduces the frequency of the compressor cycling on and off. However, if you have tools with continuous high CFM demands, a larger tank may not be as critical.

3. Maximum Pressure (PSI):

Check the maximum pressure (PSI) rating of the air compressor. Woodworking tools typically operate within a specific PSI range, so ensure that the compressor can provide the required pressure. It is advisable to choose an air compressor with a higher maximum PSI rating to accommodate any future tool upgrades or changes in your woodworking needs.

4. Noise Level:

Consider the noise level of the air compressor, especially if you’ll be using it in a residential or shared workspace. Some air compressors have noise-reducing features or are designed to operate quietly, making them more suitable for woodworking environments where noise control is important.

5. Portability:

Assess the portability requirements of your woodworking projects. If you need to move the air compressor frequently or work in different locations, a portable and lightweight compressor may be preferable. However, if the compressor will remain stationary in a workshop, a larger, stationary model might be more suitable.

6. Power Source:

Determine the power source available in your woodworking workspace. Air compressors can be powered by electricity or gasoline engines. If electricity is readily available, an electric compressor may be more convenient and cost-effective. Gasoline-powered compressors offer greater flexibility for remote or outdoor woodworking projects where electricity may not be accessible.

7. Quality and Reliability:

Choose an air compressor from a reputable manufacturer known for producing reliable and high-quality equipment. Read customer reviews and consider the warranty and after-sales support offered by the manufacturer to ensure long-term satisfaction and reliability.

8. Budget:

Consider your budget and balance it with the features and specifications required for your woodworking needs. While it’s important to invest in a reliable and suitable air compressor, there are options available at various price points to accommodate different budgets.

By considering these factors and evaluating your specific woodworking requirements, you can choose an air compressor that meets the demands of your tools, provides efficient performance, and enhances your woodworking experience.

air compressor

What are the safety considerations when operating an air compressor?

Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:

1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.

2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.

3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.

4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.

5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.

6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.

7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.

8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.

9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.

10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.

By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.

China Custom Vg1560130080 Double Cylinder Water Cooled Air Compressor Repair Kit for CHINAMFG CHINAMFG Steyr Sitrak Truck Spare Parts   arb air compressorChina Custom Vg1560130080 Double Cylinder Water Cooled Air Compressor Repair Kit for CHINAMFG CHINAMFG Steyr Sitrak Truck Spare Parts   arb air compressor
editor by CX 2024-04-10

China Best Sales Original Diesel Engine 4bt 6bt Air Compressor Repair Kit 3936808 3976366 3966517 3969102 4946294 5286968 arb air compressor

Product Description

HangZhou company main products are 0.5 kva~4000 kVA diesel and gasoline generator sets, powered by brand new Perkins, Deutz, CHINAMFG and good Chinese engine equipped with original brand alternator Stamford, Leroy somer, Mecc-alte. And also supply assembling-related components including Engine spare parts, controllers module, circuit breakers, soundproof canopy, light tower, External Fuel Tank, cable, door locks, anti-Vibration pad etc., customized ATS system, parallel control system.

With many years International marketing experience, Our products have been sold to more than 30countries including Latin Americas, Middle East, Africa, Asia, Russia and other regions. The products are widely used in many fields such as telecommunication system, data center, mining, electric power, highways, engineering companies, financial systems, hotels, railways, armies, airports, commercial buildings, hospitals, factories and etc.

 

Standard Component: Standard Component
Technics: Push
Material: Iron
Type: Crankshaft
Stock: Yes
Warranty: 1 Year
Customization:
Available

|

air compressor

What are the advantages of using rotary vane compressors?

Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:

1. Compact and Lightweight:

Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.

2. High Efficiency:

Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.

3. Quiet Operation:

Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.

4. Oil Lubrication:

Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.

5. Versatile Applications:

Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.

6. Easy Maintenance:

Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.

These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.

air compressor

What safety precautions should be taken when working with compressed air?

Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:

1. Personal Protective Equipment (PPE):

Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.

2. Compressed Air Storage:

Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.

3. Pressure Regulation:

Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.

4. Air Hose Inspection:

Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.

5. Air Blowguns:

Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.

6. Air Tool Safety:

Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.

7. Air Compressor Maintenance:

Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.

8. Training and Education:

Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.

9. Lockout/Tagout:

When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.

10. Proper Ventilation:

Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.

By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.

air compressor

In which industries are air compressors widely used?

Air compressors find extensive usage across various industries due to their versatility and ability to generate compressed air. Here are some industries where air compressors are widely employed:

1. Manufacturing: Air compressors are essential in manufacturing processes for powering pneumatic tools and equipment. They are used for tasks such as operating assembly lines, powering robotic machinery, running paint sprayers, and driving pneumatic actuators.

2. Construction: Air compressors play a crucial role in the construction industry. They power pneumatic tools like jackhammers, nail guns, impact wrenches, and concrete breakers. Compressed air is also used for concrete spraying, sandblasting, and operating air-powered lifts and hoists.

3. Automotive: Air compressors are widely used in automotive manufacturing and repair. They power air tools used in auto body shops, tire inflation equipment, pneumatic lifts, and air-operated brake systems. Compressed air is also utilized in vehicle painting and drying processes.

4. Oil and Gas: The oil and gas industry extensively relies on air compressors for various applications. They are used for pneumatic drilling, powering pneumatic tools in refineries and petrochemical plants, operating pneumatic valves and actuators, and providing instrument air for control systems.

5. Food and Beverage: Air compressors are employed in the food and beverage industry for tasks such as packaging, bottling, and sealing. They power pneumatic conveying systems, control air pressure in food processing equipment, and provide clean compressed air for food handling and storage.

6. Pharmaceutical and Healthcare: Air compressors find application in pharmaceutical manufacturing and healthcare facilities. They are used for operating medical equipment, such as ventilators and dental tools. Compressed air is also utilized in pharmaceutical processes, including tablet coating, fluid bed drying, and aseptic packaging.

7. Aerospace: The aerospace industry relies on air compressors for various applications, including aircraft maintenance and assembly. They power pneumatic tools for aircraft repair, provide compressed air for cleaning and pressurizing systems, and support ground operations, such as tire inflation and aircraft de-icing.

8. Mining: Air compressors are extensively used in the mining industry. They power pneumatic tools for drilling, rock blasting, and excavation. Compressed air is also utilized for ventilation, conveying materials, and operating underground equipment.

9. Energy and Utilities: Air compressors play a vital role in the energy and utilities sector. They are used in power generation plants for pneumatic control systems, instrument air, and operating pneumatic valves. Compressed air is also employed for cleaning and maintenance purposes.

These are just a few examples of the industries where air compressors are widely utilized. The versatility and reliability of air compressors make them indispensable in numerous applications across diverse sectors.

China Best Sales Original Diesel Engine 4bt 6bt Air Compressor Repair Kit 3936808 3976366 3966517 3969102 4946294 5286968   arb air compressorChina Best Sales Original Diesel Engine 4bt 6bt Air Compressor Repair Kit 3936808 3976366 3966517 3969102 4946294 5286968   arb air compressor
editor by CX 2023-12-08

China OEM 5 Liter Medical Oxygen Concentrator Compressor 45K Temperature Rise Oil Less Air Compressor arb air compressor

Product Description

Product Parameter

ITEM NO

GLE280A

Name

Oil free air compressor

Packing

2 pcs / carton case , 54 pcs / pallet

Weight

6.0 kg

Dimension

235*101*163 mm

Installation size

83*148 mm

Air flow rate  (L/min@bar)

>=75 L/min @2 bar

 

 

 

 

 

Technical Specification

Voltage :220V 50Hz /60Hz ; 110v 60Hz ; 

Power: <=320 W ; 

Rated air flow rate: >=75 L/min @2 bar ; 

Rate working pressure : 2 bar ;
Restart pressure : 0 bar; 

Noise : ≤52dB(A) ; 

Speed: 1440rpm /1700 rpm ; 

Temperature : -5ºC-40ºC ; 

Thermal protector : 135ºC ;
Insulation class: B 

 

Accessories : 1x capacitor , 2xL fittings and 1x safe valve

Warranty: Two Years
Lubrication Style: Oil-free
Cooling System: Air Cooling
Noise: ≤52dB(a)
Rate Working Pressure: 2 Bar
Thermal Protector: 135ºC
Samples:
US$ 65/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What are the energy-saving technologies available for air compressors?

There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:

1. Variable Speed Drive (VSD) Compressors:

VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.

2. Energy-Efficient Motors:

The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.

3. Heat Recovery Systems:

Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.

4. Air Receiver Tanks:

Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.

5. System Control and Automation:

Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.

6. Leak Detection and Repair:

Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.

7. System Optimization and Maintenance:

Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.

By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.

air compressor

How do you troubleshoot common air compressor problems?

Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:

1. No Power:

  • Check the power source and ensure the compressor is properly plugged in.
  • Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
  • Verify that the compressor’s power switch or control panel is turned on.

2. Low Air Pressure:

  • Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
  • Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
  • Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.

3. Excessive Noise or Vibration:

  • Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
  • Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
  • Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.

4. Air Leaks:

  • Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
  • Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
  • Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.

5. Excessive Moisture in Compressed Air:

  • Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
  • Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
  • Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.

6. Motor Overheating:

  • Ensure the compressor’s cooling system is clean and unobstructed.
  • Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
  • Verify that the compressor is not being operated in an excessively hot environment.
  • Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
  • Consider using a thermal overload protector to prevent the motor from overheating.

If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.

air compressor

Can you explain the basics of air compressor terminology?

Understanding the basic terminology related to air compressors can help in better comprehension of their operation and discussions related to them. Here are some essential terms related to air compressors:

1. CFM (Cubic Feet per Minute): CFM is a unit of measurement that denotes the volumetric flow rate of compressed air. It indicates the amount of air a compressor can deliver within a minute and is a crucial factor in determining the compressor’s capacity.

2. PSI (Pounds per Square Inch): PSI is a unit of measurement used to quantify pressure. It represents the force exerted by the compressed air on a specific area. PSI is a vital specification for understanding the pressure capabilities of an air compressor and determining its suitability for various applications.

3. Duty Cycle: Duty cycle refers to the percentage of time an air compressor can operate in a given time period. It indicates the compressor’s ability to handle continuous operation without overheating or experiencing performance issues. For instance, a compressor with a 50% duty cycle can run for half the time in a given hour or cycle.

4. Horsepower (HP): Horsepower is a unit used to measure the power output of a compressor motor. It indicates the motor’s capacity to drive the compressor pump and is often used as a reference for comparing different compressor models.

5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air delivered by the compressor. It helps in stabilizing pressure fluctuations, allowing for a more consistent supply of compressed air during peak demand periods.

6. Single-Stage vs. Two-Stage: These terms refer to the number of compression stages in a reciprocating air compressor. In a single-stage compressor, air is compressed in a single stroke of the piston, while in a two-stage compressor, it undergoes initial compression in one stage and further compression in a second stage, resulting in higher pressures.

7. Oil-Free vs. Oil-Lubricated: These terms describe the lubrication method used in air compressors. Oil-free compressors have internal components that do not require oil lubrication, making them suitable for applications where oil contamination is a concern. Oil-lubricated compressors use oil for lubrication, enhancing durability and performance but requiring regular oil changes and maintenance.

8. Pressure Switch: A pressure switch is an electrical component that automatically starts and stops the compressor motor based on the pre-set pressure levels. It helps maintain the desired pressure range in the receiver tank and protects the compressor from over-pressurization.

9. Regulator: A regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications and ensures a consistent and safe supply of compressed air.

These are some of the fundamental terms associated with air compressors. Familiarizing yourself with these terms will aid in understanding and effectively communicating about air compressors and their functionality.

China OEM 5 Liter Medical Oxygen Concentrator Compressor 45K Temperature Rise Oil Less Air Compressor   arb air compressorChina OEM 5 Liter Medical Oxygen Concentrator Compressor 45K Temperature Rise Oil Less Air Compressor   arb air compressor
editor by CX 2023-10-25

China wholesaler Energy Saving Air Cooler Natural Gas Compressor with Gas Liquid Separated and Gas Recovery for CNG Wellhead arb air compressor

Product Description

 

Product Description

Product function: It’s suitable For low-efficiency wells, test wells and remote wells wellhead natural gas recovery, local production of CNG. finished products The dry gas recovery skid can adapt to the characteristics and working conditions of well gas, the installation is simple, the period is short, and it is convenient for the rapid transfer of equipment.

The equipment flow diagram is as follows:
To better adapt to the field conditions of well gas recovery, the air intake separation system uses a high pressure separator to separate the gas and liquid level, using a liquid level controller to automatically control the liquid level; the pressurization system uses a hydraulic piston compressor, which can meet the intake pressure range of 3-20 MPa. Pressurization to 25 MPa, is more energy-efficient and leak-free than traditional mechanical pressurization, with low failure rate, high reliability and simple maintenance; the drying system adopts the A,B tower molecular sieve mode, which can be dried and regenerated simultaneously, with a maximum drying capacity of 2000 Nm3h, dew point is -55ºC; the control system is controlled by PLC logic control program to control each process such as separation, pressurization, drying, metering, instrument wind and so on, to realize unattended, automatic opening / stopping control; The filling metering system adopts mass Flowmeter, which meets the requirements of the state on metering, measuring range :1~4000 N m3/ h.

Application and parameter:
1.Gas intake separation system 2.Supercharging system 3.Drying system 4.Control system

5.Filling metering system 6.Fuel gas supply system 7.Housing system

Structure skid
Suction pressure 3-20Mpa
Discharge pressure 25Mpa
Gas treated ( Nm3/d) 10000-20000
Amount of treatment (t/d) 20
Main motor power 44kw
Noise  ≤75dBa
Size 6600mm*3000mm*3000mm
Total power 70KW
Fuel tank (L) 600
Scope of measurement (Nm3/h) 1-4000
Weight ≈18t

 Product Advantage:
1. Skidding, high degree of integration, good flexibility, short construction period.
2.High degree of automation, centralized control points, low labor intensity.
3. Compressor adopts hydraulic piston type, which has the characteristics of wide intake range, energy saving, no leakage, very low failure rate and simple maintenance, so it can better adapt to the characteristics of large variation of wellbore pressure range.
4. No need to be equipped with water jacket CHINAMFG and pressure regulating equipment, safety risks are small, no throttling energy waste.
5.Use high pressure post dehydration, dehydration effect is good, conducive to product sales.
6. Recovery process equipment has strong adaptability to wellhead pressure and components, and the equipment input cost is small.

Company Profile

    HangZhou Qidakon Energy Equipment Co., Ltd was established in 2007 in HangZhou, ZheJiang Province, with a plant covering an area of 18,000 square meters. We are specializing in the R&D, production and sales of natural gas compressor series products, we adhere to the professional, fine, specialty, brand development of the road, to provide customers with the best overall technical solutions of high-tech enterprises. Professional production and manufacturing of natural gas compressor for CNG filling station and its service, professional production and manufacturing of natural gas compressor for oil and gas field natural gas extraction, recovery, gathering and transportation, storage and transportation and after-sales service, products and services have covered the CNG market all over the country and major domestic oil and gas fields, and radiation to Russia, India and other Belt and Road foreign markets.
     Qidakon company has always been committed to technological innovation. Its core business team has more than 30 years of working experience in compressor design and manufacturing, and led the drafting of the industry standard for hydraulic natural gas compressors for automobile filling stations (JB/T11422-2013). Obtained nearly 100 national patents, won the national technology innovation fund, and the first in the industry through the whole machine safety explosion-proof certification, by the Ministry of Science and Technology technology innovation fund committee identified as the national technology innovation products, with its “safety, energy saving, environmental protection, investment province, simple structure and many other advantages, in more than 20 provinces (autonomous regions) used, Market share is among the best, its technical advancement, reliability, economy and industry leading position by the national attention.
 Qidakon adheres to the enterprise mission of “gas melts everything, the way to secure the world”, adheres to the business philosophy of “customer first and sustainable development”, forms the core values of “loyalty and dedication, innovation and transcendence, truth-seeking and honest, fair sharing” and the enterprise spirit of “persistence, cooperation, gratitude, tolerance, dedication”, and is determined to become a global CHINAMFG brand of gas supercharging system.

 

Our Advantages

Professional R&D Team

 

About 100 technical patents
 

Industry standard setter

The national industry standard JB/T 11422-2013 setter, Hydraulic Natural Gas Compressor for Automobile Filling Station, drives the technical progress of the industry and leads the development direction of the industry.

Advanced production workshop and strict production process

     Sapare parts area                                                                                                                                                              Welding

     Assemble skiding                                                                                                                     Pre-factory commissioning

                                                                                                                                                     

   Strict quality control process and testing        
 

 

Certification and Honor

 

Partner & Cases

       CNG refueling station site

      Indian partner

 

After Sales Service

Service Purpose: Cusomer’s Satisfaction Our Pursuit

Pre- Sale Services
Provide installation and commissioning training for customer operators according to customer requirements. At the same time, organize and register product information and set up customer files.

Services on sale
The prodessional technical service engineer guides the installation and commissioning on the side or on the line. Andwarning of the possible failure of the equipment.

After-Sales Service
Timely and rapid response ,24-hour on-line service, provide lifelong maintenance.
 

FAQ

1.How long is the lead-time of production?

    60-80Days.

     
2. What is the configuration of the whole skid equipment?

   According to different customer needs to do the country’s explosion-proof certification and industry certification.

3.Which sea ports are supported for shipment?

  ZheJiang ,HangZhou or Other international ports in China.

4.What payment methods are supported?

  T/T, LC, D/P D/D ect.

5.What technical support is available?

   We provide basic parameters for customers’ reference before sales; conduct relevant certifications according to customers’ requirements during sales; be responsible for online debugging until successful operation after sales; arrange technicians to provide on-site guidance when necessary.

6.How long is the warranty period?

   For a period of 12 months from the date of commissioning at end customer site or 15 months from the date of receipt by purchaser , whichever is earlier.

 

 

After-sales Service: 24 Hours
Warranty: 12 Months
Lubrication Style: Oil-free
Cooling System: Air Cooling
Cylinder Arrangement: Parallel Arrangement
Cylinder Position: Vertical
Customization:
Available

|

air compressor

Can air compressors be used for shipbuilding and maritime applications?

Air compressors are widely used in shipbuilding and maritime applications for a variety of tasks and operations. The maritime industry relies on compressed air for numerous essential functions. Here’s an overview of how air compressors are employed in shipbuilding and maritime applications:

1. Pneumatic Tools and Equipment:

Air compressors are extensively used to power pneumatic tools and equipment in shipbuilding and maritime operations. Pneumatic tools such as impact wrenches, drills, grinders, sanders, and chipping hammers require compressed air to function. The versatility and power provided by compressed air make it an ideal energy source for heavy-duty tasks, maintenance, and construction activities in shipyards and onboard vessels.

2. Painting and Surface Preparation:

Air compressors play a crucial role in painting and surface preparation during shipbuilding and maintenance. Compressed air is used to power air spray guns, sandblasting equipment, and other surface preparation tools. Compressed air provides the force necessary for efficient and uniform application of paints, coatings, and protective finishes, ensuring the durability and aesthetics of ship surfaces.

3. Pneumatic Actuation and Controls:

Air compressors are employed in pneumatic actuation and control systems onboard ships. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control propulsion systems, and manage various shipboard processes. Pneumatic control systems offer reliability and safety advantages in maritime applications.

4. Air Start Systems:

In large marine engines, air compressors are used in air start systems. Compressed air is utilized to initiate the combustion process in the engine cylinders. The compressed air is injected into the cylinders to turn the engine’s crankshaft, enabling the ignition of fuel and starting the engine. Air start systems are commonly found in ship propulsion systems and power generation plants onboard vessels.

5. Pneumatic Conveying and Material Handling:

In shipbuilding and maritime operations, compressed air is used for pneumatic conveying and material handling. Compressed air is utilized to transport bulk materials, such as cement, sand, and grain, through pipelines or hoses. Pneumatic conveying systems enable efficient and controlled transfer of materials, facilitating construction, cargo loading, and unloading processes.

6. Air Conditioning and Ventilation:

Air compressors are involved in air conditioning and ventilation systems onboard ships. Compressed air powers air conditioning units, ventilation fans, and blowers, ensuring proper air circulation, cooling, and temperature control in various ship compartments, cabins, and machinery spaces. Compressed air-driven systems contribute to the comfort, safety, and operational efficiency of maritime environments.

These are just a few examples of how air compressors are utilized in shipbuilding and maritime applications. Compressed air’s versatility, reliability, and convenience make it an indispensable energy source for various tasks and systems in the maritime industry.

air compressor

How does the horsepower of an air compressor affect its capabilities?

The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:

Power Output:

The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.

Air Pressure:

The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.

Air Volume:

In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.

Duty Cycle:

The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.

Size and Portability:

It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.

When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.

Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.

air compressor

How does an air compressor work?

An air compressor works by using mechanical energy to compress and pressurize air, which is then stored and used for various applications. Here’s a detailed explanation of how an air compressor operates:

1. Air Intake: The air compressor draws in ambient air through an intake valve or filter. The air may pass through a series of filters to remove contaminants such as dust, dirt, and moisture, ensuring the compressed air is clean and suitable for its intended use.

2. Compression: The intake air enters a compression chamber, typically consisting of one or more pistons or a rotating screw mechanism. As the piston moves or the screw rotates, the volume of the compression chamber decreases, causing the air to be compressed. This compression process increases the pressure and reduces the volume of the air.

3. Pressure Build-Up: The compressed air is discharged into a storage tank or receiver where it is held at a high pressure. The tank allows the compressed air to be stored for later use and helps to maintain a consistent supply of compressed air, even during periods of high demand.

4. Pressure Regulation: Air compressors often have a pressure regulator that controls the output pressure of the compressed air. This allows the user to adjust the pressure according to the requirements of the specific application. The pressure regulator ensures that the compressed air is delivered at the desired pressure level.

5. Release and Use: When compressed air is needed, it is released from the storage tank or receiver through an outlet valve or connection. The compressed air can then be directed to the desired application, such as pneumatic tools, air-operated machinery, or other pneumatic systems.

6. Continued Operation: The air compressor continues to operate as long as there is a demand for compressed air. When the pressure in the storage tank drops below a certain level, the compressor automatically starts again to replenish the compressed air supply.

Additionally, air compressors may include various components such as pressure gauges, safety valves, lubrication systems, and cooling mechanisms to ensure efficient and reliable operation.

In summary, an air compressor works by drawing in air, compressing it to increase its pressure, storing the compressed air, regulating the output pressure, and releasing it for use in various applications. This process allows for the generation of a continuous supply of compressed air for a wide range of industrial, commercial, and personal uses.

China wholesaler Energy Saving Air Cooler Natural Gas Compressor with Gas Liquid Separated and Gas Recovery for CNG Wellhead   arb air compressorChina wholesaler Energy Saving Air Cooler Natural Gas Compressor with Gas Liquid Separated and Gas Recovery for CNG Wellhead   arb air compressor
editor by CX 2023-10-19