Tag Archives: compressor scroll

China Standard 20L/Min Oil-Free Scroll Air Compressor for Kitchen Appliances Equipments with Good quality

Product Description

Specifications
Characteristics of medical oil-free scroll air compressor
Scroll Air Compressor 0.2Kw, 100% Oil-Free 20L/Min Directly Driven For 3D print/ kitchen appliance equipment/ Oxygen generator
With CE
SPECIFICATIONS
• Model: DS-HZ0.2A-2
• Airflow: 20L/min, 0.7 CFM
• Power: 0.2kw
• Working pressure: 2 bar-3bar
• Power: 24VDC
• Noise: 35-45
• Cooling: Force cooling by Air
• Size: 109*83*69mm
• Weight: 0.9kg
• Drive by: Directly Driven
FEATURES:
• Ultra quiet operation
• Clean, 100% oil-free air
• No oil maintenance is required
• Manufactured in ISO 9001:2008 certified facilities

“0” oil-free air: The compressed air is 100% oil-free and has passed the “0” oil-free certification of t Ü V, which can better meet the needs of special people for high-purity oxygen
Stable and reliable: With high volumetric efficiency and low calorific value, it can effectively reduce the internal temperature of the ventilator and increase the stability and reliability of the equipment. It is more suitable for the medical environment
Low vibration: The vibration of circular rotation is much lower than that of reciprocating motion. In the process of rotation, the high-pressure area is around the axis, evenly distributed, non-eccentric, and well-balanced
Low noise: reasonable vibration and noise reduction design, stable suction and exhaust, and stable output gas without fluctuation. It is suitable for medical scenes and provides users with a more comfortable and quiet environment

RFQ:
 
1) MOQ
MOQ is 200pcs for customization. Stock mold can be lower quantity as your request. 
 
2). Item of payment
 a. T/T:40% deposit, 60% balance after passing QC inspected before shipping.
 b. Paypal 
 c. Western Union
3). Samples? 
If we have a stock sample, we’d like to send it to you immediately, If you need to make your own style, it will cause the sample charge, We will refundable the sample charge to you if your order quantity is up to 3000pcs.
4).sample time? 
Depending on your request, as usual, It will take about 6-7 workdays to make the new sample as your need 
5). Mass product time? 
It takes about 23 days for 1000pcs. 
6).freight charge for mass products? 
It will base on your request, saying: small order, we’d like to advise you shipping by express will be favorable, You can choose by sea or Air, the freight charge will be based on the date when you place an order.
Our Services
 1. QC workers will inspect each process 100%, Guarantee the quality.
2. After-sales service available.
3. OEM & ODM designer team available.
4. Professional knowledge of famous brand items.
5. Professional sales team, All of your emails will be replied with 12 hours
 
Company Information
 
HangZhou CHINAMFG industrial Co., Ltd is a professional vehicle HVAC/Compressor supplier in ZheJiang Province, China.  We′re specializes in transport compressors such as electric vehicle air-conditioner scroll compressor, 12/24VDC electric compressor for truck additional air conditioner, compact horizontal hermetic scroll compressor for E-bus, subway, etc.
We also provide customers with vehicle air conditioning system solutions and products, such as a 12 / 24 VDC truck cab no idle air conditioning system, locomotive cab air conditioning system, RV air conditioning system, oil-free scroll air compressors, etc.
Our technical team has gained a good reputation in the field of electric vehicles, electric buses, and rail transit. Our products have surpassed their counterparts from the US and Japan in some special parameters, High efficiency, reliability, and compactness.
Our products are suitable for many different refrigerants, including R134A, R407C, R410A, ETC. Our annual output is 500, 000 PCS of EV-use semi-hermetic scroll compressors, 50, 000 PCS of hermetic horizontal inverter compressors.20000PCS of cab air conditioning.
We not only supply products but also provide comprehensive application guidance and technical support for our clients.
Our compressor driver is provided by our group company, which has many years of experience in automotive air conditioning control systems and mobile cold chain control systems. This is an advantage that other compressor companies do not have. The group has a number of R & D service institutions in Europe Company.
The business concept is Quality, Innovation, High-Efficiency, and Credit. Warmest welcome your visit. Looking CHINAMFG to working with you!

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 3 Years
Warranty: 3 Years
Transport Package: 1PCS/CTN
Specification: 390X350X230mm
Trademark: Vehcool
Origin: China
Customization:
Available

|

air compressor

How are air compressors utilized in the aerospace industry?

Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:

1. Aircraft Systems:

Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.

2. Ground Support Equipment:

Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.

3. Component Testing:

Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.

4. Airborne Systems:

In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.

5. Environmental Control Systems:

Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.

6. Engine Testing:

In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.

7. Oxygen Systems:

In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.

It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.

air compressor

How do you troubleshoot common air compressor problems?

Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:

1. No Power:

  • Check the power source and ensure the compressor is properly plugged in.
  • Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
  • Verify that the compressor’s power switch or control panel is turned on.

2. Low Air Pressure:

  • Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
  • Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
  • Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.

3. Excessive Noise or Vibration:

  • Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
  • Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
  • Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.

4. Air Leaks:

  • Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
  • Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
  • Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.

5. Excessive Moisture in Compressed Air:

  • Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
  • Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
  • Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.

6. Motor Overheating:

  • Ensure the compressor’s cooling system is clean and unobstructed.
  • Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
  • Verify that the compressor is not being operated in an excessively hot environment.
  • Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
  • Consider using a thermal overload protector to prevent the motor from overheating.

If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.

air compressor

Can you explain the basics of air compressor terminology?

Understanding the basic terminology related to air compressors can help in better comprehension of their operation and discussions related to them. Here are some essential terms related to air compressors:

1. CFM (Cubic Feet per Minute): CFM is a unit of measurement that denotes the volumetric flow rate of compressed air. It indicates the amount of air a compressor can deliver within a minute and is a crucial factor in determining the compressor’s capacity.

2. PSI (Pounds per Square Inch): PSI is a unit of measurement used to quantify pressure. It represents the force exerted by the compressed air on a specific area. PSI is a vital specification for understanding the pressure capabilities of an air compressor and determining its suitability for various applications.

3. Duty Cycle: Duty cycle refers to the percentage of time an air compressor can operate in a given time period. It indicates the compressor’s ability to handle continuous operation without overheating or experiencing performance issues. For instance, a compressor with a 50% duty cycle can run for half the time in a given hour or cycle.

4. Horsepower (HP): Horsepower is a unit used to measure the power output of a compressor motor. It indicates the motor’s capacity to drive the compressor pump and is often used as a reference for comparing different compressor models.

5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air delivered by the compressor. It helps in stabilizing pressure fluctuations, allowing for a more consistent supply of compressed air during peak demand periods.

6. Single-Stage vs. Two-Stage: These terms refer to the number of compression stages in a reciprocating air compressor. In a single-stage compressor, air is compressed in a single stroke of the piston, while in a two-stage compressor, it undergoes initial compression in one stage and further compression in a second stage, resulting in higher pressures.

7. Oil-Free vs. Oil-Lubricated: These terms describe the lubrication method used in air compressors. Oil-free compressors have internal components that do not require oil lubrication, making them suitable for applications where oil contamination is a concern. Oil-lubricated compressors use oil for lubrication, enhancing durability and performance but requiring regular oil changes and maintenance.

8. Pressure Switch: A pressure switch is an electrical component that automatically starts and stops the compressor motor based on the pre-set pressure levels. It helps maintain the desired pressure range in the receiver tank and protects the compressor from over-pressurization.

9. Regulator: A regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications and ensures a consistent and safe supply of compressed air.

These are some of the fundamental terms associated with air compressors. Familiarizing yourself with these terms will aid in understanding and effectively communicating about air compressors and their functionality.

China Standard 20L/Min Oil-Free Scroll Air Compressor for Kitchen Appliances Equipments   with Good qualityChina Standard 20L/Min Oil-Free Scroll Air Compressor for Kitchen Appliances Equipments   with Good quality
editor by CX 2024-03-27

China manufacturer 3.7kw Automobile Portable Oil Free Scroll Air Compressor for Electric Bus best air compressor

Product Description

Oil Free Scroll Mini Electric Bus Vehicles Bus Cars Air Compressor

Technical parameters:
 

Technical parameters      
Model LD20571  LD3
 
 

Application: Low Back Pressure Type
Performance: Low Noise
Mute: Mute
Lubrication Style: Oil-free
Drive Mode: Electric
Configuration: Portable

air compressor

What are the energy-saving technologies available for air compressors?

There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:

1. Variable Speed Drive (VSD) Compressors:

VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.

2. Energy-Efficient Motors:

The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.

3. Heat Recovery Systems:

Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.

4. Air Receiver Tanks:

Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.

5. System Control and Automation:

Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.

6. Leak Detection and Repair:

Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.

7. System Optimization and Maintenance:

Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.

By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.

air compressor

How are air compressors used in refrigeration and HVAC systems?

Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:

1. Refrigerant Compression:

In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.

2. Refrigeration Cycle:

The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.

3. HVAC Cooling and Heating:

In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.

4. Air Conditioning:

Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.

5. Compressor Types:

Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.

6. Energy Efficiency:

Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.

By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.

air compressor

What are the different types of air compressors?

There are several different types of air compressors, each with its own unique design and operating principle. Here’s an overview of the most commonly used types:

1. Reciprocating Air Compressors: Reciprocating air compressors, also known as piston compressors, use one or more pistons driven by a crankshaft to compress air. They operate by drawing air into a cylinder, compressing it with the piston’s up-and-down motion, and discharging the compressed air into a storage tank. Reciprocating compressors are known for their high pressure capabilities and are commonly used in industrial applications.

2. Rotary Screw Air Compressors: Rotary screw air compressors utilize two interlocking screws to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads. These compressors are known for their continuous duty cycle, high efficiency, and quiet operation. They are widely used in industrial, commercial, and automotive applications.

3. Centrifugal Air Compressors: Centrifugal air compressors rely on the principle of centrifugal force to compress air. They use a high-speed impeller to accelerate the incoming air and then convert the kinetic energy into pressure energy. Centrifugal compressors are commonly used in large-scale industrial applications that require high volumes of compressed air.

4. Rotary Vane Air Compressors: Rotary vane air compressors employ a rotor with sliding vanes that compress the air. As the rotor rotates, the vanes slide in and out of the rotor, creating compression chambers. Air is drawn in, trapped, and compressed as the vanes move. These compressors are compact, reliable, and suitable for small to medium-sized applications.

5. Axial Flow Air Compressors: Axial flow air compressors are primarily used in specialized applications such as aircraft engines and gas turbines. They utilize a series of rotating and stationary blades to compress air in a continuous flow. Axial flow compressors are known for their high flow rates and are designed for applications that require large volumes of compressed air.

6. Scroll Air Compressors: Scroll air compressors consist of two interlocking spirals or scrolls that compress the air. One spiral remains stationary while the other orbits around it, creating a series of expanding and contracting pockets that compress the air. Scroll compressors are compact, reliable, and commonly used in applications where low noise and oil-free air are required, such as medical and dental equipment.

These are just a few examples of the different types of air compressors available. Each type has its own advantages, capabilities, and ideal applications. The choice of air compressor depends on factors such as required pressure, flow rate, duty cycle, noise level, oil-free operation, and specific application requirements.

China manufacturer 3.7kw Automobile Portable Oil Free Scroll Air Compressor for Electric Bus   best air compressorChina manufacturer 3.7kw Automobile Portable Oil Free Scroll Air Compressor for Electric Bus   best air compressor
editor by CX 2023-11-14

China factory CHINAMFG Zp Series High Quality Hermetic Scroll Compressor Air Compressor for Refrigeration Condensing Unit Cold Room Refrigeration Equipment lowes air compressor

Product Description

 

PRODUCT DIAPLAY

 

PRODUCT DATA

 

Feature and advantage
1.Double flexible design
2.Energy efficiency ratio
3.Lower noise and vibration levels
4.Uninstall startup technology
5.High strength DU bearings

Product Features
1.Dual machine parallel and triple machine parallel, with excellent seasonal energy efficiency (required
2.Verified or confirmed by Gu Lun)
3.The axial and radial flexibility technology of the CHINAMFG  vortex ensures the compression equipment
4.Excellent reliability and efficiency
5.Low Life Cycle Climate Performance (LCCP)
6.Broad product capacity range suitable for R410A refrigerant
7.Lower noise and vibration levels
8.Lower oil circulation rate
9.Expanded compressor operating range based on 5K suction superheat
10.For heat pump applications

 

R410A 380-420V; 50Hz, 3 Phase            
                           
Typical Model Motor type Nominal Power (HP) Nominal Capacity Input power (W) Current        (A) COP             (W/W) EER         (Btu/Wh) Displ  (cm3/rev) Oil charge(L) Weight   (kg) locked-rotor current  (A) Noise   (dBA)
(W) (Btu/h)
ZP24K5E TFM 2.0  5,670 19,350 2,000 3.6  2.83  9.7  22.8 0.62 21.6 28 66
ZP29K5E TFM 2.4  7,003 23,900 2,380 4.3  2.93  10.0  27.6 0.74 22.3 38 66
ZP31K5E TFM 2.6  7,350 25,000 2,580 4.6  2.84  9.7  29.5 0.74 22.3 38 66
TFD 2.6  7,350 25,000 2,580 4.6  2.84  9.7  29.5 0.74 22.3 38 66
ZP34K5E TFD 2.8  8,200 28,000 2,830 5.2  2.90  9.9  32.8 1.24 28.9 46 68
ZP36KUE TFM 3.0  8,790 30,000 2,860 6.3  3.08  10.5  34.5 1.66 30.4 55 71
ZP39KSE TFM 3.3  9,250 31,600 3,150 5.3  2.93  10.0  36.9 1.24 30.9 43 68
ZP42KUE TFM 3.5  10,255 35,000 3,300 5.9  3.11  10.6  39.9 1.24 30.4 55 71
TFD 3.5  10,255 35,000 3,300 5.9  3.11  10.6  39.9 1.24 30.4 55 71
ZP44KUE TFM 3.5  10,841 37,000 3,520 6.2  3.08  10.5  42 1.24 30.4 55 71
ZP49KUE TFM 4.1  11,950 40,800 3,810 6.5  3.14  10.7  46.4 1.24 29.9 72 71
ZP51KUE TFM 4.3  12,453 42,500 3,970 7.5  3.14  10.7  47.1 1.24 29.9 72 69
TFD 4.3  12,050 42,500 3,970 7.5  3.14  10.7  47.1 1.24 29.9 72 69
ZP54KUE TFM 4.5  13,185 45,000 4,240 8.6  3.11  10.6  49.9 1.24 30.4 72 71
TFD 4.5  12,900 45,000 4,240 8.6  3.11  10.6  49.9 1.24 30.4 72 71
ZP57KUE TFM 4.8  13,918 47,500 4,480 8.6  3.11  10.6  53.1 1.24 30.4 73.5 71
TFD 4.8  13,918 47,500 4,480 8.6  3.11  10.6  53.1 1.24 30.4 73.5 71
ZP61KUE TFM 5.1  15,090 51,500 4,840 9.2  3.11  10.6  57.2 1.24 30.4 76 71
TFD 5.1  15,090 51,500 4,840 9.2  3.11  10.6  57.2 1.24 30.4 76 71
ZP67KCE TFD 5.6  16,115 55,000 5,200 9.1  3.11  10.6  63 1.78 39.9 74 72
ZP72KCE TFD 5.6  17141 58,500 5,700 9.8  3.02  10.3  67.2 1.78 39.9 75 72
ZP72KCE TFD 6.0  17,100 58,500 5,700 9.8  3.02  10.3  67.1 1.77 39.9 75 72
ZP76KCE TFD 6.3  18,400 62,700 5,850 11.0  3.14  10.7  70.8 1.77 39.5 100 72
ZP83KCE TFD 7.0  19,900 68,000 6,400 11.7  3.11  10.6  77.2 1.77 39.5 101 20
ZP83KFE TFD 7.0  19,900 68,000 6,600 12.1  3.02  10.3  77.2 1.77 39.5 92 72
ZP90KCE TFD 8.0  21800 74,500 6,950 12.3  3.14  10.7  84.2 2.51 57.6 95 72
ZP91KCE TFD 8.0  21,700 74,000 6,790 12.4  3.19  10.9  84.6 1.77 40.8 101 72
ZP91KFE TFD 8.0  21,700 74,000 6,981 12.6  3.11  10.6  84.6 1.77 40.8 92 75
ZP103KCE TFD 9.0  25,200 86,000 7,800 14.4  3.22  11.0  96.4 3.25 61.2 111 74
ZP103KFE TFD 9.0  25,200 85,700 7,940 14.7  3.16  10.8  96.4 3.25 60.8 127 74
ZP104KCE TFD 9.0  25,400 86,800 7,790 14.3  3.27  11.2  96.4 2.51 48 128 74
ZP120KCE TFD 10.0  29,300 100,000 9,110 16.6  3.22  11.0  113.6 3.25 61.2 118 74
ZP120KFE TFD 10.0  29,300 100,000 9,340 17.6  3.14  10.7  113.6 3.25 62.6 153 74
ZP122KCE TFD 10.0  29,900 102,000 9,060 16.6  3.27  11.2  112.3 2.51 48.8 139 74
ZP137KCE TFD 12.0  32,500 111,000 10,200 18.3  3.19  10.9  127.2 3.25 62.1 118 77
ZP143KCE TFD 12.0  35,500 121,000 10,800 19.4  3.28  11.2  132.7 2.51 48.8 146 72
ZP144KFE TFD 12.0  35,500 121,000 10,800 19.1  3.28  11.2  134.6 3.25 60.8 144 75
ZP144KCE TFD 12.0  35,500 121,000 11,100 19.8  3.19  10.9  134.6 3.25 60.8 153 75
ZP154KCE TFD 13.0  37,000 127,000 11,600 20.8  3.22  11.0  142.9 3.25 64.9 140 76
ZP154KFE TFD 13.0  37,000 126,000 11,900 21.3  3.10  10.6  142.9 3.25 64.9 152 76
ZP182KCE TFD 15.0  44,000 150,000 13,500 26.3  3.25  11.1  167.2 3.25 66.2 174 77
ZP235KCE TWD 20.0  57,000 195,000 17,600 30.0  3.25  11.1  217.2 4.67 140.6 225 82
ZP295KCE TWD 25.0  71,500 244,000 22,000 37.2  3.25  11.1  268.5 6.8 160.1 272 85
ZP385KCE TWD 30.0  92,500 316,000 28,500 48.1  3.25  11.1  349.4 6.3 176.9 310 85
ZP485KCE TWD 40.0  118,400 404,000 35,700 60.3  3.31  11.3  444.5 6.3 200 408 89
ZP725KCE FED 60.0  180,000 615,000 54,800 93.5  3.29  11.2  663.7 6.3 250 666 90

MAIN PRIDUCTS

 

CERTIFICATE

 

After-sales Service: 1 Year
Warranty: 12month
Installation Type: Movable Type
Lubrication Style: Oil-free
Cylinder Position: Vertical
Structure Type: Piston
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What are the advantages of using rotary vane compressors?

Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:

1. Compact and Lightweight:

Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.

2. High Efficiency:

Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.

3. Quiet Operation:

Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.

4. Oil Lubrication:

Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.

5. Versatile Applications:

Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.

6. Easy Maintenance:

Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.

These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.

air compressor

How are air compressors employed in the mining industry?

Air compressors play a crucial role in the mining industry, providing reliable and efficient power for various mining operations. Here are some common applications of air compressors in mining:

1. Exploration and Drilling:

Air compressors are used during exploration and drilling activities in the mining industry. Compressed air is used to power drilling rigs, pneumatic hammers, and other drilling equipment. The high-pressure air generated by the compressor helps in drilling boreholes, extracting core samples, and exploring potential mineral deposits.

2. Ventilation and Air Quality Control:

Air compressors are employed in underground mining to provide ventilation and control air quality. Compressed air is used to operate ventilation fans and air circulation systems, ensuring adequate airflow and removing harmful gases, dust, and fumes from the mining tunnels and work areas.

3. Material Conveyance:

In mining operations, air compressors are used for material conveyance. Pneumatic systems powered by air compressors are utilized to transport materials such as coal, ore, and other minerals. Compressed air is used to operate pneumatic conveyors, pumps, and material handling equipment, allowing for efficient and controlled movement of bulk materials.

4. Dust Suppression:

Air compressors are employed for dust suppression in mining areas. Compressed air is used to spray water or other suppressants to control dust generated during mining activities. This helps in maintaining a safe and healthy work environment, reducing the risks associated with dust inhalation and improving visibility.

5. Instrumentation and Control:

Air compressors are used for instrumentation and control purposes in mining operations. Compressed air is utilized to power pneumatic control systems, control valves, and actuators. These systems regulate the flow of fluids, control equipment movements, and ensure the proper functioning of various mining processes.

6. Explosive Applications:

In mining, air compressors are used for explosive applications. Compressed air is employed to power pneumatic tools used for rock fragmentation, such as rock drills and pneumatic breakers. The controlled power of compressed air enables safe and efficient rock breaking without the need for traditional explosives.

7. Maintenance and Repair:

Air compressors are essential for maintenance and repair activities in the mining industry. Compressed air is used for cleaning machinery, removing debris, and powering pneumatic tools for equipment maintenance and repair tasks. The versatility and portability of air compressors make them valuable assets in maintaining mining equipment.

It is important to note that different mining operations may have specific requirements and considerations when selecting and using air compressors. The size, capacity, and features of air compressors can vary based on the specific mining application and environmental conditions.

By utilizing air compressors effectively, the mining industry can benefit from increased productivity, improved safety, and efficient operation of various mining processes.

air compressor

What is the difference between a piston and rotary screw compressor?

Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:

1. Operating Principle:

  • Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
  • Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.

2. Compression Method:

  • Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
  • Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.

3. Efficiency:

  • Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
  • Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.

4. Noise Level:

  • Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
  • Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.

5. Maintenance:

  • Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
  • Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.

6. Size and Portability:

  • Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
  • Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.

These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.

China factory CHINAMFG Zp Series High Quality Hermetic Scroll Compressor Air Compressor for Refrigeration Condensing Unit Cold Room Refrigeration Equipment   lowes air compressorChina factory CHINAMFG Zp Series High Quality Hermetic Scroll Compressor Air Compressor for Refrigeration Condensing Unit Cold Room Refrigeration Equipment   lowes air compressor
editor by CX 2023-11-09

China high quality Vsh Serie Scroll Air Cooling Compressor Vsh117ajanb with R410A air compressor price

Product Description

Compressor Description

air conditioning compressors reduce costs across the entire product lifespan in the application.
They support system design for high efficiency performance and for the use of alternative refrigerants for light commercial, commercial and industrial CHINAMFG applications such as rooftops units, chillers, process cooling, packaged units etc.

Key Features

Wide range with wide application envelope suit varied applications

Innovative IDV technology further enhances part-load efficiency with minimal redesign costs

Bringing a new level of compressor robustness and system reliability

Manifold configurations with high reliability for staged modulations

SH Series R410a Scroll Compressor, 200-230V/60Hz/3Ph
SH090A3ALC,SH105A3ALC,SH120A3ALC,SH140A3ALC,SH161A3ALC,SH180A3AAB,SH180A3AAF,SH180A3ABF,SH184A3ALC,SH240A3AAE,SH240A3ABE,SH240A3ABB,SH295A3AAE,SH295A3ABE,SH300A3AAE,SH300A3ABE,SH300A3ABB,SH380A3AAB,SH380A3ABB
 

MODEL Nominal Ton(60HZ) Cooling capacity Outout power COP EER Exhaust Capacity Displacement Oil charge Net weight
TR W Btu/h kw W/W Btu/h/W cm³/rev m³/h dm³ kg
SH090A3ALC 7.5 22300 76100 7.19 3.1 10.59 88.4 15.4 3 58
SH105A3ALC 9 26850 91600 8.47 3.17 10.8 103.5 18 3.3 64
SH120A3ALC 10 30000 157100 9.46 3.17 10.8 116.9 20.3 3.3 64
SH140A3ALC 12 34700 118400 10.86 3.19 10.9 133 23.12 3.3 67
SH161A3ALC 13 38800 132400 12.15 3.19 10.9 151.7 26.4 3.3 69
SH184A3ALC 15 44650 152500 13.73 3.25 11.1 170.3 29.6 3.6 71
SH180B3AAF 15 44000 150300 13.73 3.21 10.95 170.2 29.6 6.7 106
SH240A3AAE 20 60400 206300 18.77 3.22 11 227.6 39.6 6.7 108
SH300A3ABE 25 77300 264000 24.01 3.22 11 285.5 49.7 6.7 153
SH380A3ABB 30 90400 3 0571 0 28.19 3.21 10.95 345 60 7.2 164

Xihu (West Lake) Dis.r Technologies is a global supplier and marketer of CHINAMFG maintenance and compressor solutions for commercial and residential air conditioning,heating,ventilation and refrigeration field, manufacturing and other industrial applications.
Incorporated in 2571,our innovative products have been used by facilities and plant maintenance personnel CHINAMFG for the maintenance of CHINAMFG systems,and producion of AC and refrigerating equipment.Our products include CHINAMFG maintenance machines,refigeration equipment and compressors.

Core Markets Served:
Commercial/Residential/Maritime/Utility HVAC
Air Conditioning,Refrigerator,Coldroom,Heat Pump Manufacturing
Refrigeration Parts Wholesale and Retail

Certification:

Packing and Delivery

FAQ

1. How long have you been in this field and where is your company?
We have been in this field for years and we are located in HangZhou, the Canton Fair host city, and the capital city of ZheJiang Province, near to HangZhou, Hong Kong, very convenient for trading and shipping.

2. What are your main catagories?
– Hermetic Compressor (scroll, rotary, reciprocating)
– Semi hermetic compressor (screw)
– CHINAMFG maintenance supplies
– Refrigeration equipment and parts

3.Can you offer us quality product at the best price?
Of course, Quality is our culture; we always take good care of our clients interest if both are sincere to establish good relationship. 

4.What is the term of payment?
T/T, L/C,Western Union; Trade Assurance online.

5.How about the MOQ?
1 unit acceptable. 

6. Cooperative Partners?
Gree, Landa, Media, GMCC, LG, Panasonic,Copeland, Maneurop, Performer,  Daikin, Hitachi,Highly, Mitsubishi, Secop, Embraco,Chigo, Haier, Sanyo, Wanbao, Sanhua,etc…

Contact Us

HangZhou Xihu (West Lake) Dis.r Technologies Co.,Ltd.
 
 
 

After-sales Service: Video Technical Support, Online Support
Warranty: 1year
Installation Type: Stationary Type

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

Can air compressors be used for gas compression and storage?

Yes, air compressors can be used for gas compression and storage. While air compressors are commonly used to compress and store air, they can also be utilized for compressing and storing other gases, depending on the specific application requirements. Here’s how air compressors can be used for gas compression and storage:

Gas Compression:

Air compressors can compress various gases by utilizing the same principles applied to compressing air. The compressor takes in the gas at a certain pressure, and through the compression process, it increases the pressure and reduces the volume of the gas. This compressed gas can then be used for different purposes, such as in industrial processes, gas pipelines, or storage systems.

Gas Storage:

Air compressors can also be used for gas storage by compressing the gas into storage vessels or tanks. The compressed gas is stored at high pressure within these vessels until it is needed for use. Gas storage is commonly employed in industries where a continuous and reliable supply of gas is required, such as in natural gas storage facilities or for storing compressed natural gas (CNG) used as a fuel for vehicles.

Gas Types:

While air compressors are primarily designed for compressing air, they can be adapted to handle various gases, including but not limited to:

  • Nitrogen
  • Oxygen
  • Hydrogen
  • Carbon dioxide
  • Natural gas
  • Refrigerant gases

It’s important to note that when using air compressors for gas compression and storage, certain considerations must be taken into account. These include compatibility of the compressor materials with the specific gas being compressed, ensuring proper sealing to prevent gas leaks, and adhering to safety regulations and guidelines for handling and storing compressed gases.

By leveraging the capabilities of air compressors, it is possible to compress and store gases efficiently, providing a reliable supply for various industrial, commercial, and residential applications.

air compressor

What is the impact of altitude on air compressor performance?

The altitude at which an air compressor operates can have a significant impact on its performance. Here are the key factors affected by altitude:

1. Decreased Air Density:

As altitude increases, the air density decreases. This means there is less oxygen available per unit volume of air. Since air compressors rely on the intake of atmospheric air for compression, the reduced air density at higher altitudes can lead to a decrease in compressor performance.

2. Reduced Airflow:

The decrease in air density at higher altitudes results in reduced airflow. This can affect the cooling capacity of the compressor, as lower airflow hampers the dissipation of heat generated during compression. Inadequate cooling can lead to increased operating temperatures and potential overheating of the compressor.

3. Decreased Power Output:

Lower air density at higher altitudes also affects the power output of the compressor. The reduced oxygen content in the air can result in incomplete combustion, leading to decreased power generation. As a result, the compressor may deliver lower airflow and pressure than its rated capacity.

4. Extended Compression Cycle:

At higher altitudes, the air compressor needs to work harder to compress the thinner air. This can lead to an extended compression cycle, as the compressor may require more time to reach the desired pressure levels. The longer compression cycle can affect the overall efficiency and productivity of the compressor.

5. Pressure Adjustments:

When operating an air compressor at higher altitudes, it may be necessary to adjust the pressure settings. As the ambient air pressure decreases with altitude, the compressor’s pressure gauge may need to be recalibrated to maintain the desired pressure output. Failing to make these adjustments can result in underinflated tires, improper tool performance, or other issues.

6. Compressor Design:

Some air compressors are specifically designed to handle higher altitudes. These models may incorporate features such as larger intake filters, more robust cooling systems, and adjusted compression ratios to compensate for the reduced air density and maintain optimal performance.

7. Maintenance Considerations:

Operating an air compressor at higher altitudes may require additional maintenance and monitoring. It is important to regularly check and clean the intake filters to ensure proper airflow. Monitoring the compressor’s operating temperature and making any necessary adjustments or repairs is also crucial to prevent overheating and maintain efficient performance.

When using an air compressor at higher altitudes, it is advisable to consult the manufacturer’s guidelines and recommendations specific to altitude operations. Following these guidelines and considering the impact of altitude on air compressor performance will help ensure safe and efficient operation.

air compressor

What maintenance is required for air compressors?

Maintaining air compressors is essential to ensure their optimal performance, longevity, and safe operation. Regular maintenance helps prevent breakdowns, improves efficiency, and reduces the risk of accidents. Here are some key maintenance tasks for air compressors:

1. Regular Inspection: Perform visual inspections of the air compressor to identify any signs of wear, damage, or leaks. Inspect the compressor, hoses, fittings, and connections for any abnormalities. Pay attention to oil leaks, loose bolts, and worn-out components.

2. Oil Changes: If your air compressor has an oil lubrication system, regular oil changes are crucial. Follow the manufacturer’s recommendations for the frequency of oil changes and use the recommended oil type. Dirty or degraded oil can impact compressor performance and lead to premature wear.

3. Air Filter Cleaning or Replacement: Clean or replace the air filter regularly to ensure proper air intake and prevent contaminants from entering the compressor. Clogged or dirty filters can restrict airflow and reduce efficiency.

4. Drain Moisture: Air compressors produce moisture as a byproduct of the compression process. Accumulated moisture in the tank can lead to rust and corrosion. Drain the moisture regularly from the tank to prevent damage. Some compressors have automatic drains, while others require manual draining.

5. Belt Inspection and Adjustment: If your compressor has a belt-driven system, inspect the belts for signs of wear, cracks, or tension issues. Adjust or replace the belts as necessary to maintain proper tension and power transmission.

6. Tank Inspection: Inspect the compressor tank for any signs of corrosion, dents, or structural issues. A damaged tank can be hazardous and should be repaired or replaced promptly.

7. Valve Maintenance: Check the safety valves, pressure relief valves, and other valves regularly to ensure they are functioning correctly. Test the valves periodically to verify their proper operation.

8. Motor and Electrical Components: Inspect the motor and electrical components for any signs of damage or overheating. Check electrical connections for tightness and ensure proper grounding.

9. Keep the Area Clean: Maintain a clean and debris-free area around the compressor. Remove any dirt, dust, or obstructions that can hinder the compressor’s performance or cause overheating.

10. Follow Manufacturer’s Guidelines: Always refer to the manufacturer’s manual for specific maintenance instructions and recommended service intervals for your air compressor model. They provide valuable information on maintenance tasks, lubrication requirements, and safety precautions.

Regular maintenance is vital to keep your air compressor in optimal condition and extend its lifespan. It’s also important to note that maintenance requirements may vary depending on the type, size, and usage of the compressor. By following a comprehensive maintenance routine, you can ensure the reliable operation of your air compressor and maximize its efficiency and longevity.

China high quality Vsh Serie Scroll Air Cooling Compressor Vsh117ajanb with R410A   air compressor priceChina high quality Vsh Serie Scroll Air Cooling Compressor Vsh117ajanb with R410A   air compressor price
editor by CX 2023-11-08